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Abstract. The running coupling is introduced into the equation for propagation of the pomeron in the nu-
cleus via the bootstrap relation. The resulting equation coincides with the one obtained in the color dipole
formalism by summing contributions from quark–antiquark loops, with a general choice of the regularization
scheme.

1 Introduction

Lately, renewed interest has been shown in the introduc-
tion of a running coupling into the BFKL dynamics. Sum-
mation of contributions from the quark–antiquark loops to
the evolution of the gluon density has been used to restore
the full dependence of the coupling on the running scale
in the color dipole approach [1–3]. It turned out that the
obtained kernel for the linear BFKL equation essentially
coincides with the one that we found many years ago by
imposing the bootstrap condition necessary for the fulfil-
ment of unitarity [4, 5]. In this paper we draw attention
to the fact that the bootstrap condition in fact allows one
to derive also the structure of the triple-pomeron interac-
tion and thus the form of the non-linear BFKL equation
describing propagation of the pomeron in the nucleus. This
is a simple consequence of the possibility to express the
basic splitting kernel from two to three and four gluons
(‘the Bartels vertex’ [6]) via the basic BFKL interaction.
The relation between the splitting vertex and reggeized
gluon interaction and the bootstrap are the necessary in-
gredients of the pomeron interaction in the reggeized gluon
approach. Indeed they allow one to present all contribu-
tions to the four-gluon amplitude in the standard form of
a pomeron splitting into two pomerons. Thus preserving
these two relations seems to be essential for the construc-
tion of a pomeron interaction with the running coupling.
As in our earlier papers, we have to stress from the

start that the introduction of the running coupling into the
BFKL formalism cannot be made rigorously and uniquely.
The formalism admits transverse momenta of any magni-
tude, including very small ones, at which the concept of
the gluon and its coupling looses any meaning. The intro-
duced running coupling has to be artificially continued to
small momentum values, where it is completely undeter-
mined. The only information one can get from the running
of the coupling refers to the region of high momenta. It
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remains to be seen in what measure this information de-
pends on the low momentum behavior, which cannot be
fixed theoretically in any reliable manner. It is known, how-
ever, that the non-linear BFKL equation, unlike the linear
one, is not very sensitive to the infrared region. So hope-
fully this equation has a better chance to produce results
weakly dependent on the assumed infrared behavior of the
running coupling.
Also the method uses the bootstrap equations and the

triple-pomeron interaction in the lowest order of the coup-
ling. As a result, one can only hope to establish the leading
order behavior in the running coupling. For the linear evo-
lution, in the next-to-leading order, it has been explicitly
found that the bootstrap method correctly reproduces the
part of the kernel responsible for the running of the coup-
ling but not the rest piece [7–9]. One expects the same to
be true also for the non-linear evolution. Finally, it is to be
noted that the approximation of large Nc is used for the
interaction. For finiteNc the theory ceases to be that of in-
teracting pomerons but rather becomes one of interacting
reggeized gluons, which leads to enormous complications
for the non-linear evolution.
The paper is organized as follows. The first section is

dedicated to the derivation of the triple-pomeron vertex
with the running coupling introduced via the bootstrap
relation. After recalling this method to introduce the run-
ning coupling, we go along the same steps as in [10, 11],
where the vertex was derived in the limit Nc→∞ for the
fixed coupling. In Sect. 3 we construct the full amplitude
with a single triple-pomeron interaction, coupling the ver-
tex with three pomerons. This result enables us to build the
equation for the pomeron in the large nucleus in Sect. 4. Fi-
nally in Sect. 5 we compare our results with those obtained
within the color dipole approach.
Having in mind the application of the formalism to

the large nucleus as a target, we limit ourselves to the
case of propagation of pomerons with zero total momenta.
However, a generalization to non-zero total momenta is
straightforward.
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2 Triple-pomeron vertex

2.1 Generalities

As mentioned in the Introduction, this paper follows
the idea of introducing a running coupling via the boot-
strap [4, 5]. Derivation of the triple-pomeron vertex in the
limitNc→∞ then goes as presented in [10, 11] for the fixed
coupling case.
Basic formulas for the introduction of a running coup-

ling via the bootstrap condition consist in expressing both
the gluon trajectory ω and the intergluon interaction in the
vacuum channelK in terms of a single function η(q) of the
gluon momentum, which then can be chosen to conform
to the high-momentum behavior of the gluon density with
a running coupling. Explicitly,

ω(q) =−
1

2
Nc

∫
d2q1
(2π)2

η(q)

η(q1)η(q2)
, (1)

K (q1, q2|q
′
1q
′
2) =Nc

[(
η(q1)

η(q′1)
+
η(q2)

η(q′2)

)
1

η(q1− q′1)

−
η(q1+ q2)

η(q′1)η(q
′
2)

]
. (2)

In these definitions it is assumed that q1+ q2 = q
′
1+ q

′
2 =

q. For arbitrary η(q) the following bootstrap relation is
satisfied:

1

2

∫
d2q′1
(2π)2

K(q, q1, q
′
1) = ω(q)−ω(q1)−ω(q2) . (3)

The fixed coupling corresponds to the choice

η(q) =
2π

g2
q2 . (4)

Then one finds the standard expression for the trajectory
ω(q) and

K(q, q1, q
′
1) =

g2Nc

2π
V (q, q1, q

′
1) ,

where V is the standard BFKL interaction. Note that the
extra 2π in the denominator corresponds to the BFKL
weight 1/(2π)3 in the momentum integration, which we
prefer to take standardly as 1/(2π)2.
From the high-momentum behavior of the gluon distri-

bution with a running coupling one finds

η(q) =
1

2π
bq2 ln

q2

Λ2
, q2� Λ2 , (5)

where Λ is the standard QCD parameter, and

b=
1

12
(11Nc−2Nf) . (6)

As to the behavior of η(q) at small momenta, we shall
assume

η(0) = 0 , (7)

which guarantees that the gluon trajectory ω(q) passes
through zero at q = 0 in accordance with the gluon prop-
erties. The asymptotic equation (5) and the condition (7)
are the only properties of η(q) that follow from the the-
oretical reasoning. A concrete form of η(q) interpolating
between (7) and (5) may be chosen differently. One hopes
that the following physical results will not strongly depend
on the choice.
Our old derivation in [10] of the triple-pomeron ver-

tex was actually based on the property (7), obviously valid
for (4), the bootstrap relation and the relation between the
Bartels transition vertex K2→3 and the intergluon BFKL
interaction V ((12) in [10])

K2→3 (1, 2, 3|1
′, 3′) = V (2, 3|1′−1, 3′)−V (12, 3|1′3′) .

(8)

Here and in the following we frequently denote the gluon
momenta just by numbers: 1≡ q1, 1′ ≡ q′1 etc. Also we use
12≡ q1+ q2. All the rest of the conclusions were obtained
from these three relations in a purely algebraic manner.
Our idea is that if we define the transition vertex by

a similar relation in terms of the new intergluon vertex
K, (2), then the whole derivation will remain valid also for
arbitrary η(q) satisfying (7) and thus for a running coup-
ling, provided η(q) is chosen appropriately. In the next
subsection we briefly recapitulate the successive stages of
the derivation for arbitrary η(q) with η(0) = 0.

2.2 Leading order in Nc→∞

The changes necessary to pass to arbitrary η(q) are min-
imal. Obviously in our old formulas we have to drop the
coupling constant factors g, since now g is provided by 1/η.
We also drop factors Nc in the interaction because we pre-
fer to include it into the kernel K. With these comments,
the two-gluon equation becomes

S20D2 =D20+K12D2 , (9)

where

S20 = j−1−ω(1)−ω(2) ; (10)

j is the angular momentum variable,

D20 =Nc (f(0, q)−f(q1, q2)) (11)

and f(q1, q2) is just the quark–antiquark loop with, say,
the gluon with momentum q1 coupled to the quark and the
other one, with momentum q2, coupled to the antiquark.
With the running coupling D20 does not change form, but
both ω in (10) and K in (9) are now given by (1) and (2),
respectively.
The three-gluon system exists in two color states, which

differ in the ordering of the three gluons along the loop, 123
and 213. For each order the equation is

S30D3 =D30+D2→3+
1

2
(K12+K23+K31)D3 ,

(12)
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where now

S30 = j−1−
3∑
j=1

ω(j) (13)

and

D
(123)
30 =−D(213)30 =

√
Nc

8
(D20(2)−D20(1)−D20(3)) .

(14)

The new element is the term D2→3, which corresponds to
transitions of the initial two-gluon system into the final
three-gluon system. This transition is accomplished by the
2→ 3 vertexW , which, as explained, we define via the new
intergluon interaction by a relation similar to (8):

W (1, 2, 3|1′, 3′) =K (2, 3|1′−1, 3′)−K (12, 3|1′3′) .
(15)

Explicitly, in terms of η,

1

Nc
W (1, 2, 3|1′, 3′) =

η(2)

η(1−1′)η(3−3′)
−

η(23)

η(1−1′)η(3′)

−
η(12)

η(1′)η(3−3′)
+
η(123)

η(1′)η(3′)
. (16)

Note that, as with a fixed coupling constant,

W (1, 2, 3|1′, 3′) =W (3, 2, 1|3′, 1′) . (17)

We find in full analogy with [10]

D2→3 =

√
Nc

8
W (1, 2, 3|1′, 3′)⊗D2 (1

′, 3′)

≡

√
Nc

8
W (1, 2, 3) , (18)

where ⊗ means integration over the intermediate gluon
momentum with weight 1/(2π)2.
The next step is to show that (12) for the three-gluon

system is solved by the reggeized zero term ansatz:

D
(123)
3 =−D(213)3 =

√
Nc

8
(D2(2)−D2(1)−D2(3)) ,

(19)

that is, by (14), in which the loops are substituted by the
full solutions of the two-gluon equation (9). The proof is
wholly based on the bootstrap and (15) and literally re-
peats the corresponding proof in [10].
Passing to the four-gluon system, in the limit Nc→∞

we find two configurations differing by the order of gluons
along the quark–antiquark loop: 1234 and 2134. The equa-
tion governing the four-gluon system is

S40D4 =D40+D2→4+D3→4

+
1

2
(K12+K23+K34+K41)D4 , (20)

where

S40 = j−1−
4∑
j=1

ω(j) . (21)

The inhomogeneous terms are

D
(1234)
40 =

1

4
Nc (D20(1)+D20(4)−D20(14)) , (22)

D
(2134)
40 =

1

4
Nc (D20(2)+D20(3)−D20(12)−D20(13)) ,

(23)

D
(1234)
2→4 =−

1

4
NcW (1, 23, 4) , D

(2134)
2→4 = 0 (24)

(the definition ofW (1, 2, 3) is given by the second equality
in (18)),

D
(1234)
3→4 =

√
Nc

8

(
W (2, 3, 4|2′, 4′)⊗D(124)3 (1, 2′, 4′)

+W (1, 2, 3|1′, 3′)⊗D
(134)
3 (1′, 3′, 4)

)
, (25)

and

D
(2134)
3→4 =−

√
Nc

8

(
W (1, 2, 4|1′, 4′)⊗D(134)3 (1′, 3, 4′)

+W (1, 3, 4|1′, 4′)⊗D(124)3 (1′, 2, 4′)
)
. (26)

Repeating the corresponding derivation in [10] we
demonstrate that in the limit Nc→∞ the solution of the
four-gluon equation is again given by the reggeized zero
order terms:

D
(1234)
4 =

1

4
Nc(D2(1)+D2(4)−D2(14)) (27)

and

D
(2134)
4 =

1

4
Nc(D2(2)+D2(3)−D2(12)−D2(13)) .

(28)

The proof is purely algebraic and is wholly based on the
bootstrap and (15) and (7) valid for any choice of the func-
tion η(q) with η(0) = 0.

2.3 The triple-pomeron configuration

The next step is to study the next-to-leading configuration
in Nc→∞ corresponding to the triple-pomeron interac-
tion. Again the derivation practically literally repeats our
old one for a fixed coupling constant. The governing four-
gluon equation is similar to (20)

S40D4 =D40+D2→4+D3→4+D4→4+(K12+K34)D4 .
(29)

The formal difference is in the absence of interaction be-
tween the two final pomerons, which are assumed to be
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made of gluon pairs (1,2) and (3,4), doubling of the rest in-
teractions acting in the vacuum color channels and in the
appearance of the term D4→4, which describes transitions
from the leading color configuration to the subleading one
corresponding to two pomerons.
The four inhomogeneous terms are

D40 =
1

2

⎛
⎝ 4∑
j=1

D20(j)−
4∑
j=2

D20(1j)

⎞
⎠ , (30)

D2→4 =−W (1, 23, 4) , (31)

D3→4 =

√
2

Nc

(
W (1, 2, 3|1′, 3′)⊗D

(134)
3 (1′, 3′, 4)

−W (1, 2, 4|1′, 4′)⊗D(134)3 (1′, 3, 4′)

+W (2, 3, 4|2′, 4′)⊗D(124)3 (1, 2′, 4)

−W (1, 3, 4|1′, 4′)⊗D(124)3 (1′, 2, 4)
)

(32)

and

D4→4 =
1

Nc
(K23+K14−K13−K24)

(
D
(1234)
4 −D

(2134)
4

)
,

(33)

where the D4 on the right-hand side are given by (27)
and (28). As with a fixed coupling constant, all terms ex-
ceptD40 can be presented as a result of the action of a cer-
tain operator Z on the two-gluon state, so that (29) can be
rewritten as

S40D4 =D40+Z⊗D2+(K12+K34)D4 . (34)

The explicit form of this operator can be expressed in terms
of the function

G(1, 2, 3) =−W (1, 2, 3)−D2(1, 23)(ω(2)−ω(23))

−D2(12, 3)(ω(2)−ω(12)) . (35)

Then one finds

Z⊗D2 =
1

2
(2G(1, 34, 2)+2G(3, 12, 4)+G(1, 23, 4)

+G(1, 24, 3)+G(2, 13, 4)+G(2, 14, 3)

−G(1, 3, 24)−G(1, 4, 23)−G(2, 3, 14)

−G(2, 4, 13)−G(3, 2, 14)

−G(3, 1, 24)−G(4, 2, 13)−G(4, 1, 23)

+G(23, 0, 14)+G(13, 0, 24)) . (36)

This formula is identical to the old one in [10], but with new
expressions for bothW and ω in terms of the function η.

2.4 The triple-pomeron vertex

Corresponding to the two inhomogeneous terms in (34) its
solution is split in two terms, the double pomeron exchange
term, generated by D40, and the triple-pomeron interac-
tion term Z⊗D2. However, one can simplify the solution
transferring the part of the double pomeron exchange term

leading in the high-energy limit into the triple interaction
part [11, 12]. This is achieved by separating from the total
solution the reggeizedD40 term:

D4 =D40(D20→D2)+D
I
4 . (37)

The irreducible partDI4 proves to be a pure triple-pomeron
interaction, which satisfies

DI4 = Y ⊗D2+(K12+K34)D
I
4 . (38)

The derivation again uses only the bootstrap, the rela-
tion (15) between W and K and the property (7). The ex-
plicit form for the new triple-pomeron vertex Y turns out
to be

Y ⊗D2 =
1

2
G(1, 23, 4)+G(1, 24, 3)+G(2, 13, 4)

+G(2, 14, 3)+G(12, 0, 34)

−G(1, 2, 34)−G(2, 1, 34)−G(3, 4, 12)

−G(4, 3, 12)) . (39)

For a fixed coupling constant this expression was found
long ago in [12]. In our approach it remains true also for
an arbitrary function η(q) and thus for a running coupling
introduced by means of this function.

3 Coupling to pomerons

3.1 Momentum space approach

In the momentum space coupling the vertex Y to two out-
going pomerons is straightforward. The two pomerons are
described by a product P (1, 2)P (3, 4), and all one has to do
is to integrate this product with Y ⊗D2 over the gluon mo-
menta 1, 2, 3 and 4 with 12 and 34 fixed and 1234 = 0 from
momentum conservation.
As with a fixed coupling constant, there are certain

properties of the wave function and the vertex that sim-
plify the resulting expression. First we expect that the
pomeron wave function in the coordinate space P (r1, r2)
vanishes if the two gluons are located at the same spa-
tial point: P (r, r) = 0. This property is well known for the
BFKL pomeron with a fixed coupling constant and is re-
lated to the behavior of (4) at q = 0. With a running coup-
ling this behavior does not change, so we expect that the
coordinate wave function will continue to vanish at r1 = r2.
As a result the last five terms in the sum (39) will give no
contribution, since they depend only on the sum of the mo-
menta in one of the pomerons and so put the two gluons at
the same spatial point in it. If the mentioned property of
the pomeron wave function is violated with the introduc-
tion of a running coupling, we still can drop the five last
terms once we restrict ourselves to the case when the two
pomerons are taken at zero total momentum, 12 = 34 = 0,
which is the only case relevant for the pomeron propaga-
tion through the nucleus. Indeed direct inspection shows
that

G(q1, q2, q3) = 0 , if q1 = 0 , or q3 = 0 . (40)
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Second, due to the symmetry of the pomeron wave func-
tion, each of the four remaining terms in (39) gives the
same contribution. So, as for the fixed coupling, the triple-
pomeron vertex effectively reduces to

Y ⊗D2 = 2G(1, 23, 4) . (41)

Coupling this vertex to two forward pomerons and
using (35) we get an expression for the triple-pomeron in-
teraction amplitude T in terms of the function η (suppress-
ing the dependence on rapidities),

T = 2Nc

∫
d2q1d

2q4d
2q′1

(2π)6
P (1, 2)P (3, 4)

{
−D2(1

′,−1′)

×

(
η(14)

η(1−1′)η(4−4′)
−

η(1)

η(1−1′)η(4′)
−

η(4)

η(1′)η(4−4′)

)

+
1

2
D2(1,−1)

(
η(14)

η(1′)η(14−1′)
−

η(1)

η(1′)η(1−1′)

)

+
1

2
D2(4,−4)

(
η(14)

η(1′)η(14−1′)
−

η(4)

η(1′)η(4−1′)

)}
,

(42)

with 12 = 34 = 1′4′ = 0. In this formula actually both D2
and P are the pomeron wave functions for the incom-
ing and outgoing pomerons, respectively. The function
D2 is the amputated wave function related to P by the
relation

P (1,−1) =
1

η2(1)
D2(1,−1) . (43)

Expression (42) is rather cumbersome. A simpler ex-
pression is obtained in the coordinate representation,
which will presently be derived.

3.2 Coordinate space approach

We represent

(2π)2δ2(q12− q1− q2)P (q1, q2)

=

∫
d2r1d

2r2Pq12(r1, r2)e
iq1r1+iq2r2 , (44)

where Pq12(r1, r2) is the coordinate wave function of the
pomeron with the total momentum q12. Similarly we repre-
sent the second pomeron via Pq34(r3, r4). Finally,

G(q1, q2+ q3, q4)

=

∫
d2r1d

2r2d
2r3 e

−iq1r1−i(q2+q3)r2−iq4r3G(r1, r2, r3) .

(45)

Then integration over q1, . . . , q4 gives

(2π)2δ2(q12+ q34)T

= 2

∫
dr2r1d

2r2d
2r3Pq12(r1, r2)Pq34(r3, r2)G(r1, r2, r3) .

(46)

We have

Pq12(r1, r2) = e
1
2 iq12(r1+r2)P (r12) , (47)

where r12 = r1− r2. So (46) becomes

(2π)2δ2(q12+ q34)T

= 2

∫
d2r1d

2r2d
2r3 e

1
2 i[q12r1+(q12+q34)r2+q34r3]

×P (r12)P (r32)G(r1, r2, r3) . (48)

At this stage we note that if we drop P (r12) from the inte-
grand we get∫
dr2r1d

2r2d
2r3 e

1
2 i[q12r1+(q12+q34)r2+q34r3]

×P (r32)G(r1, r2, r3)

=

∫
d2r2d

2r3 e
1
2 i[(q12+q34)r2+q34r3]P (r32)G(q12, r2, r3) .

(49)

If q12 = 0, then this expression vanishes due to the prop-
erty (40). As a result one can substitute in (48)

P (r12)→ P (r12)−P (0) , P (r32)→ P (r32)−P (0) .
(50)

So whether P (0) is equal to zero or not, for the forward
case one can always make it equal to zero by the substitu-
tion (50). So in the following we assume P (0) = 0.
As follows from translational invariance, for the overall

zero total momentumG(r1, r2, r3) =G(r12, r32). So taking
as integration variables r2, r12 and r32 we finally obtain

T = 2

∫
d2r12d

2r32P (r12)P (r32)G(r1, r2, r3) . (51)

Now we have to calculate G(r1, r2, r3). Due to P (0) = 0

we may drop all terms containing δ2(r12) and/or δ
2(r23).

The total contribution consists of two parts, the first one
coming from the term−W in (35) and the second one from
the rest. As for the fixed coupling constant case [11] in the
first part only the first term in (16) gives a contribution
that does not contain δ2(r12), nor δ

2(r23), nor both. Direct
calculation gives for this contribution

G1(r1, r2, r3) =−NcD2(r1, r3)

×

∫
d2ρη̃(ρ)ξ(r12−ρ)ξ(r32−ρ) ,

(52)

where η̃(r) is the Fourier transform of η(q), and ξ(r) is the
Fourier transform of 1/η(q). From the four terms in the sec-
ond part the contribution that does not contain δ2(r12),
nor δ2(r23), nor both, comes from the first and third terms.
Its calculation gives

G2(r1, r2, r3) =
1

2
NcD2(r1, r3)

×

∫
d2ρη̃(ρ)

(
ξ2(r12−ρ)+ ξ

2(r32−ρ)
)
.

(53)
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Summing we get the final expression

G(r1, r2, r3) =
1

2
NcD2(r13)F (r12, r32) , (54)

where

F (r1, r2) =

∫
d2ρη̃(ρ) (ξ(r1−ρ)− ξ(r2−ρ))

2
, (55)

and we also used that for the forward pomeronD2(r1, r3) =
D2(r13). The triple-pomeron contribution to the ampli-
tude is then obtained as

T (Y ) =Nc

∫ Y
0

dy

∫
d2r12d

2r32F (r12, r32)P (Y −y, r12)

×P (Y −y, r32)D2(y, r13) , (56)

where we restored the y-dependence, suppressed up to
now.
Note that for a fixed coupling constant we have (see the

appendix and also [11])

Gfix(r1, r2, r3) =−
g2Nc

8π3
r213
r212r

2
32

(
g2D2(r13)

)
. (57)

We can consider our new expression as a result of changing
the fixed g2 to a running quantity:

g2→−
4π3r212r

2
32

r213
F (r12, r32) . (58)

The function F (r1, r2) can be presented in a different
form, which demonstrates the absence of an ultraviolet
divergency coming from the singular behavior of η̃(ρ) at
ρ→ 0. We have

∫
d2ρη̃(ρ)ξ2(r1−ρ)

=

∫
d2ρ

d2q

(2π)2
d2q1
(2π)2

d2q2
(2π)2

η(q)

η(q1)η(q2)

× eiqρ+iq1(r1−ρ)+iq2(r1−ρ)

=

∫
d2q1
(2π)2

d2q2
(2π)2

η(q1+ q2)

η(q1)η(q2)
eir1(q1+q2) (59)

and similarly
∫
d2ρη̃(ρ)ξ(r1−ρ)ξ(r2−ρ)

=

∫
d2ρ

d2q

(2π)2
d2q1
(2π)2

d2q2
(2π)2

η(q)

η(q1)η(q2)

× eiqρ+iq1(r1−ρ)+iq2(r2−ρ)

=

∫
d2q1
(2π)2

d2q2
(2π)2

η(q1+ q2)

η(q1)η(q2)
eir1q1+ir2q2 . (60)

So we find

F (r1, r2) =

∫
d2q1
(2π)2

d2q2
(2π)2

η(q1+ q2)

η(q1)η(q2)

(
eiq1r1− eiq1r2

)

×
(
eiq2r1− eiq2r2

)
. (61)

In this form it is clear that F (r1, r2) is a well defined func-
tion that does not contain an ultraviolet nor an infrared
divergency.
For further use note the identity

∫
d2r1F (r1− r, r1) =

∫
d2q1
(2π)2

d2q2
(2π)2

η(q1+ q2)

η(q1)η(q2)

×
(
e−iq1r−1

) (
e−iq2r−1

)

×

∫
d2r1e

ir1(q1+q2) = 0 , (62)

since η(0) = 0.

4 Pomeron in the nucleus

With the triple-pomeron vertex known, it is straight-
forward to obtain the equation that sums fan diagrams
describing propagation of the pomeron in the nucleus.
Repeating the derivation for the fixed coupling constant
in [13] we find for this sum Φ(y, b, r) at fixed impact
parameter b:

Φ(y, r, b)

= Φ1(y, r, b)+
1

2
Nc

∫ ∞
0

dy′
3∏
j=1

d2rjδ
2(r1− r2+ r3)

×F (r2, r3)η
2(−i∇1)G(y−y

′, r, r1)Φ(y
′, r2, b)Φ(y

′, r3, b) .

(63)

HereG(y, r, r′) is the pomeron forward Green function sat-
isfying the equation

(
∂

∂y
+H

)
G(y, r, r′) = δ(y)η−1(−i∇)η−1

× (−i∇′)δ2(r− r′) , (64)

with the Hamiltonian H for the non-amputated forward
wave function given by

H = 2ω+K† , (65)

where ω is expressed via function η according to (1) and

K†(q1|q
′
1) = 2Nc

η(q′1)

η(q1)η(q1− q′1)
. (66)

The inhomogeneous term Φ1 corresponds to the single
pomeron exchange:

Φ1(y, r, b) =
1

2
NcAT (b)

∫
d2r′G(y, r, r′)ρ(r′) , (67)

where T (b) is the nuclear profile function, and ρ(r) is the
color density of the nucleon. Applying the operator ∂/∂y+
H to (63) we find the evolution equation for the pomeron in
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the nucleus:(
∂

∂y
+H

)
Φ(y, r, b)

= δ(y)Φ0(r, b)+
1

2
Nc

∫ 3∏
j=2

d2rjδ
2(r− r2+ r3)F (r2, r3)

×Φ(y, r2, b)Φ(y, r3, b) , (68)

where Φ0(r, b), playing the role of the initial condition, is
given by

Φ0(r, b) =
1

2
AT (b)η−2(−i∇)ρ(r) . (69)

Unlike the case of the fixed coupling constant this equa-
tion is not simplified in momentum space.
To compare with the dipole approach, we rewrite our

expression (68) as a whole in the coordinate space. To do
this we have to rewrite the action of the Hamiltonian (65)
on the wave function in coordinate space. In transforming
the pomeron amplitude Φ(y, q, b) to coordinate space we
have to take into account the condition

Φ(y, r = 0, b) = 0 , (70)

which we have extensively used. Technically it means that
we have to add to Φ(y, q, b) a term proportional to δ2(q)
that guarantees this property. This is essential to obtain
the correct form for the linear part of the evolution equa-
tion in coordinate space1.
It is convenient to split (55) into three terms,

F (r1, r2)) = f(r1, r1)+f(r2, r2)−2f(r1, r2) , (71)

where

f(r1, r2) =

∫
d2ρη̃(ρ)ξ(r1−ρ)ξ(r2−ρ) . (72)

In terms of this function one easily finds

2

∫
d2q

(2π)2
eiqrω(q)Φ(y, q, b) =Nc

∫
d2r1f(r1− r, r1− r)

×Φ(y, r1, b) (73)

and
∫
d2q

(2π)2
d2q′

(2π)2
eiqrK†(q|q′)Φ(y, q′, b)

= 2Nc

∫
d2r1f(r1− r, r1)Φ(y, r1, b) . (74)

Thus in coordinate space we get

HΦ(y, r, b) =−Nc

∫
d2r1(2f(r1− r, r1)−f(r1− r, r1− r))

×Φ(y, r1)+const , (75)

1 We are greatly indebted to Y. Kovchegov, who pointed out
this circumstance.

where const should be taken to ensure property (70). As
a result we find

HΦ(y, r, b) =Nc

∫
d2r1F (r1− r, r1)Φ(y, r1, b)

=
1

2
Nc

∫
d2r1F (r1− r, r1)(Φ(y, r1, b)

+Φ(y, r1− r, b)) . (76)

Using the identity (62) we may add to the bracket any func-
tion independent of r1 to finally obtain

HΦ(y, r, b) =
1

2
Nc

∫
d2r1F (r1− r, r1)(Φ(y, r1, b)

+Φ(y, r1− r, b)−Φ(y, r, b)) . (77)

In this form the linear part of the evolution equation ac-
quires the standard color dipole structure (see e.g. [2]) and
the whole evolution equation becomes

∂

∂y
Φ(y, r) =−

1

2
Nc

∫
d2r1F (r1− r, r1)

× (Φ(y, r1, b)+Φ(y, r1− r, b)−Φ(y, r, b)

−Φ(y, r1, b)Φ(y, r1− r, b)) . (78)

In the limit of the fixed coupling constant we find, drop-
ping the infrared regularization terms,

ffix(r1, r2) =−
αs

π2
r1r2
r21r
2
2

, (79)

where at r1 = r2 = r one should understand 1/r
2 as regu-

larized in the ultraviolet [11]:

1

r2
≡

1

r2+ ε2
+2πδ2(r) ln ε , ε→ 0 . (80)

So in analogy with [1] we may define three running coup-
ling constants by

f(r1, r2) =−
1

π2
αs(r1)αs(r2)

αs(r1, r2)

r1r2
r21r
2
2

, (81)

with the additional condition αs(r, r) = αs(r), and
rewrite (78) as

∂

∂y
Φ(y, r, b) =

1

2π2
Nc

∫
d2r2d

2r3δ(r− r1+ r2)F (r1, r2)

×

(
αs(r1)

r21
+
αs(r2)

r22
−2
αs(r1)αs(r2)

αs(r1, r2)

r1r2
r21r
2
2

)

× (Φ(y, r1, b)+Φ(y, r2, b)−Φ(y, r, b)

−Φ(y, r1, b)Φ(y, r2, b)) . (82)
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5 Discussion

Equations (78) and (82) present our final result for the non-
linear BFKL equation with the running coupling.We stress
that the function η(q) occurring in them is determined
only by its asymptotic form (5) together with the require-
ment (7). A simple possibility is to choose

η(q) =
1

2π
bq2 ln

(
a+
q2

Λ2

)
, (83)

with b given by (6) and with arbitrary a > 1. Also one has
to remember that the equations are derived only in the
leading order in the running coupling. Already subleading
terms of the relative order 1/ ln(q2/Λ2) remain undeter-
mined, since they correspond to the next-to-leading order
in the running coupling.
Our final coordinate space equation (82) fully coincides

with (101) in [1] obtained in the dipole formalism (for the
forward case). However, in our approach the running cou-
plings αs(r) and αs(r1, r2) are defined by (81) in a general
manner, irrespective of any regularization procedure, and
they are determined by the concrete choice of the func-
tion η(q). In fact, they are fixed only in as far the high-
momentum behavior of this function is known and so ad-
mit a high degree of arbitrariness. It remains to be seen
how this arbitrariness may influence concrete results that
follow from the solution of the evolution equation (82).
Our equation for the linear evolution contains the run-

ning coupling of different arguments, clearly visible in (1)
and (2). It allows for arbitrary relations between the mag-
nitude of the momenta qi, q

′
i and qi− q

′
i, i = 1, 2. A dif-

ferent method to introduce the running coupling and find
the subleading terms has been proposed in [14] based on
the study of certain specific regions of these momenta and
use of the renormalization group method to improve the
equation in the collinear limit. It would be interesting to
combine both approaches to incorporate both the boot-
strap and the renormalization group into the equation. At
present do not have any definite proposals on this point.
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Appendix: Function F (r1, r2)
with a fixed coupling constant

We check that for a fixed coupling constant the function
F (r1, r2) indeed passes into the expression corresponding
to (57). In the fixed coupling case η(k) is given by (4). Then

we find

η̃(ρ) =−
2π

g2
∇2δ2(ρ) (A.1)

and

ξ(r) =−
g2

(2π)2
(ln r− c) , (A.2)

where c = ln(2/m)+ψ(1) and m is the infrared regular-
izer (gluon mass). Terms containing c and thus depending
on the infrared regularization cancel in the final result.
Performing the integration over ρ with the help of the
δ-function, we find

ffix(r1, r2) =−
g2

(2π)3
(
(ln r1− c)∇

2
2 ln r2+(ln r2− c)

×∇22 ln r1+2∇1 ln r1∇2 ln r2
)
. (A.3)

Taking into account that

∇2 ln r = 2πδ2(r) , (A.4)

we find

ffix =−
g2

8π3

(
2
r1r2
r21r
2
2

+2πδ2(r1)(ln r2− c)

+2πδ2(r2)(ln r1− c)

)
. (A.5)

Forming F (r1, r2) according to (71) we see that terms with
c cancel, and dropping terms proportional to δ2(r1) or
δ2(r2) we find

F fix(r1, r2) =−
g2

4π3
(r1− r2)2

r21r
2
2

, (A.6)

in full correspondence with (57).
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